STM32 HAL

From ElectroDragon Wiki
Revision as of 14:30, 18 May 2021 by Chao (talk | contribs) (→‎MDK-ARM Setup by STM32CubeMx)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Main

Vaiables

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;

I2C_HandleTypeDef hi2c1;
I2C_HandleTypeDef hi2c2;

SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi2; 

UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;

Prototype

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC_Init(void);
static void MX_I2C1_Init(void);
static void MX_I2C2_Init(void);
static void MX_SPI1_Init(void);
static void MX_SPI2_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);


Main Init

 MX_GPIO_Init();
 MX_ADC_Init();
 MX_I2C1_Init();
 MX_I2C2_Init();
 MX_SPI1_Init();
 MX_SPI2_Init();
 MX_USART1_UART_Init();
 MX_USART2_UART_Init();


Clock RCC

void SystemClock_Config(void)
{
 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
 /** Initializes the CPU, AHB and APB busses clocks 
 */
 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSI14;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
 RCC_OscInitStruct.HSI14State = RCC_HSI14_ON;
 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.HSI14CalibrationValue = 16;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 {
   Error_Handler();
 }
 /** Initializes the CPU, AHB and APB busses clocks 
 */
 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                             |RCC_CLOCKTYPE_PCLK1;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
 {
   Error_Handler();
 }
 PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_I2C1;
 PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;
 PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_HSI;
 if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
 {
   Error_Handler();
 }
}

ADC

static void MX_ADC_Init(void)
{
 /* USER CODE BEGIN ADC_Init 0 */
 /* USER CODE END ADC_Init 0 */
 ADC_ChannelConfTypeDef sConfig = {0};
 /* USER CODE BEGIN ADC_Init 1 */
 /* USER CODE END ADC_Init 1 */
 /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) 
 */
 hadc.Instance = ADC1;
 hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
 hadc.Init.Resolution = ADC_RESOLUTION_12B;
 hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
 hadc.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD;
 hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
 hadc.Init.LowPowerAutoWait = DISABLE;
 hadc.Init.LowPowerAutoPowerOff = DISABLE;
 hadc.Init.ContinuousConvMode = DISABLE;
 hadc.Init.DiscontinuousConvMode = DISABLE;
 hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START;
 hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
 hadc.Init.DMAContinuousRequests = DISABLE;
 hadc.Init.Overrun = ADC_OVR_DATA_PRESERVED;
 if (HAL_ADC_Init(&hadc) != HAL_OK)
 {
   Error_Handler();
 }
 /** Configure for the selected ADC regular channel to be converted. 
 */
 sConfig.Channel = ADC_CHANNEL_8;
 sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
 sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
 if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
 {
   Error_Handler();
 }
 /* USER CODE BEGIN ADC_Init 2 */
 /* USER CODE END ADC_Init 2 */
}

I2C

/**
 * @brief I2C1 Initialization Function
 * @param None
 * @retval None
 */
static void MX_I2C1_Init(void)
{
 /* USER CODE BEGIN I2C1_Init 0 */
 /* USER CODE END I2C1_Init 0 */
 /* USER CODE BEGIN I2C1_Init 1 */
 /* USER CODE END I2C1_Init 1 */
 hi2c1.Instance = I2C1;
 hi2c1.Init.Timing = 0x2000090E;
 hi2c1.Init.OwnAddress1 = 0;
 hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
 hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
 hi2c1.Init.OwnAddress2 = 0;
 hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
 hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
 hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
 if (HAL_I2C_Init(&hi2c1) != HAL_OK)
 {
   Error_Handler();
 }
 /** Configure Analogue filter 
 */
 if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
 {
   Error_Handler();
 }
 /** Configure Digital filter 
 */
 if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
 {
   Error_Handler();
 }
 /* USER CODE BEGIN I2C1_Init 2 */
 /* USER CODE END I2C1_Init 2 */
}
/**
 * @brief I2C2 Initialization Function
 * @param None
 * @retval None
 */
static void MX_I2C2_Init(void)
{
 /* USER CODE BEGIN I2C2_Init 0 */
 /* USER CODE END I2C2_Init 0 */
 /* USER CODE BEGIN I2C2_Init 1 */
 /* USER CODE END I2C2_Init 1 */
 hi2c2.Instance = I2C2;
 hi2c2.Init.Timing = 0x2000090E;
 hi2c2.Init.OwnAddress1 = 0;
 hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
 hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
 hi2c2.Init.OwnAddress2 = 0;
 hi2c2.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
 hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
 hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
 if (HAL_I2C_Init(&hi2c2) != HAL_OK)
 {
   Error_Handler();
 }
 /** Configure Analogue filter 
 */
 if (HAL_I2CEx_ConfigAnalogFilter(&hi2c2, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
 {
   Error_Handler();
 }
 /** Configure Digital filter 
 */
 if (HAL_I2CEx_ConfigDigitalFilter(&hi2c2, 0) != HAL_OK)
 {
   Error_Handler();
 }
 /* USER CODE BEGIN I2C2_Init 2 */
 /* USER CODE END I2C2_Init 2 */
}

SPI

/**
 * @brief SPI1 Initialization Function
 * @param None
 * @retval None
 */
static void MX_SPI1_Init(void)
{
 /* USER CODE BEGIN SPI1_Init 0 */
 /* USER CODE END SPI1_Init 0 */
 /* USER CODE BEGIN SPI1_Init 1 */
 /* USER CODE END SPI1_Init 1 */
 /* SPI1 parameter configuration*/
 hspi1.Instance = SPI1;
 hspi1.Init.Mode = SPI_MODE_MASTER;
 hspi1.Init.Direction = SPI_DIRECTION_2LINES;
 hspi1.Init.DataSize = SPI_DATASIZE_4BIT;
 hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
 hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
 hspi1.Init.NSS = SPI_NSS_HARD_OUTPUT;
 hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
 hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
 hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
 hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
 hspi1.Init.CRCPolynomial = 7;
 hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
 hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
 if (HAL_SPI_Init(&hspi1) != HAL_OK)
 {
   Error_Handler();
 }
 /* USER CODE BEGIN SPI1_Init 2 */
 /* USER CODE END SPI1_Init 2 */
}
/**
 * @brief SPI2 Initialization Function
 * @param None
 * @retval None
 */
static void MX_SPI2_Init(void)
{
 /* USER CODE BEGIN SPI2_Init 0 */
 /* USER CODE END SPI2_Init 0 */
 /* USER CODE BEGIN SPI2_Init 1 */
 /* USER CODE END SPI2_Init 1 */
 /* SPI2 parameter configuration*/
 hspi2.Instance = SPI2;
 hspi2.Init.Mode = SPI_MODE_SLAVE;
 hspi2.Init.Direction = SPI_DIRECTION_2LINES;
 hspi2.Init.DataSize = SPI_DATASIZE_4BIT;
 hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
 hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
 hspi2.Init.NSS = SPI_NSS_HARD_INPUT;
 hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
 hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
 hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
 hspi2.Init.CRCPolynomial = 7;
 hspi2.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
 hspi2.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
 if (HAL_SPI_Init(&hspi2) != HAL_OK)
 {
   Error_Handler();
 }
 /* USER CODE BEGIN SPI2_Init 2 */
 /* USER CODE END SPI2_Init 2 */
}

USART

/**
 * @brief USART1 Initialization Function
 * @param None
 * @retval None
 */
static void MX_USART1_UART_Init(void)
{
 /* USER CODE BEGIN USART1_Init 0 */
 /* USER CODE END USART1_Init 0 */
 /* USER CODE BEGIN USART1_Init 1 */
 /* USER CODE END USART1_Init 1 */
 huart1.Instance = USART1;
 huart1.Init.BaudRate = 9600;
 huart1.Init.WordLength = UART_WORDLENGTH_8B;
 huart1.Init.StopBits = UART_STOPBITS_1;
 huart1.Init.Parity = UART_PARITY_NONE;
 huart1.Init.Mode = UART_MODE_TX_RX;
 huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
 huart1.Init.OverSampling = UART_OVERSAMPLING_16;
 huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
 huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
 if (HAL_UART_Init(&huart1) != HAL_OK)
 {
   Error_Handler();
 }
 /* USER CODE BEGIN USART1_Init 2 */
 /* USER CODE END USART1_Init 2 */
}
/**
 * @brief USART2 Initialization Function
 * @param None
 * @retval None
 */
static void MX_USART2_UART_Init(void)
{
 /* USER CODE BEGIN USART2_Init 0 */
 /* USER CODE END USART2_Init 0 */
 /* USER CODE BEGIN USART2_Init 1 */
 /* USER CODE END USART2_Init 1 */
 huart2.Instance = USART2;
 huart2.Init.BaudRate = 115200;
 huart2.Init.WordLength = UART_WORDLENGTH_8B;
 huart2.Init.StopBits = UART_STOPBITS_1;
 huart2.Init.Parity = UART_PARITY_NONE;
 huart2.Init.Mode = UART_MODE_TX_RX;
 huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
 huart2.Init.OverSampling = UART_OVERSAMPLING_16;
 huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
 huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
 if (HAL_UART_Init(&huart2) != HAL_OK)
 {
   Error_Handler();
 }
 /* USER CODE BEGIN USART2_Init 2 */
 /* USER CODE END USART2_Init 2 */
} 

GPIO

/**
 * @brief GPIO Initialization Function
 * @param None
 * @retval None
 */
static void MX_GPIO_Init(void)
{
 GPIO_InitTypeDef GPIO_InitStruct = {0};
 /* GPIO Ports Clock Enable */
 __HAL_RCC_GPIOA_CLK_ENABLE();
 __HAL_RCC_GPIOB_CLK_ENABLE();
 /*Configure GPIO pin Output Level */
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET);
 /*Configure GPIO pin : PB1 */
 GPIO_InitStruct.Pin = GPIO_PIN_1;
 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
 /*Configure GPIO pin : PB2 */
 GPIO_InitStruct.Pin = GPIO_PIN_2;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
 /*Configure GPIO pin : PA8 */
 GPIO_InitStruct.Pin = GPIO_PIN_8;
 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
 GPIO_InitStruct.Alternate = GPIO_AF2_TIM1;
 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}

stm32f0xx_hal_msp.c

void HAL_I2C_MspInit

void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
{
 GPIO_InitTypeDef GPIO_InitStruct = {0};
 if(hi2c->Instance==I2C1)
 {
 /* USER CODE BEGIN I2C1_MspInit 0 */
 /* USER CODE END I2C1_MspInit 0 */
 
   __HAL_RCC_GPIOB_CLK_ENABLE();
   /**I2C1 GPIO Configuration    
   PB7     ------> I2C1_SDA
   PB8     ------> I2C1_SCL 
   */
   GPIO_InitStruct.Pin = GPIO_PIN_7|GPIO_PIN_8;
   GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
   GPIO_InitStruct.Pull = GPIO_PULLUP;
   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
   GPIO_InitStruct.Alternate = GPIO_AF1_I2C1;
   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
   /* Peripheral clock enable */
   __HAL_RCC_I2C1_CLK_ENABLE();
 /* USER CODE BEGIN I2C1_MspInit 1 */
 /* USER CODE END I2C1_MspInit 1 */
 }
 else if(hi2c->Instance==I2C2)
 {
 /* USER CODE BEGIN I2C2_MspInit 0 */
 /* USER CODE END I2C2_MspInit 0 */
 
   __HAL_RCC_GPIOB_CLK_ENABLE();
   /**I2C2 GPIO Configuration    
   PB10     ------> I2C2_SCL
   PB11     ------> I2C2_SDA 
   */
   GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11;
   GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
   GPIO_InitStruct.Pull = GPIO_PULLUP;
   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
   GPIO_InitStruct.Alternate = GPIO_AF1_I2C2;
   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
   /* Peripheral clock enable */
   __HAL_RCC_I2C2_CLK_ENABLE();
 /* USER CODE BEGIN I2C2_MspInit 1 */
 /* USER CODE END I2C2_MspInit 1 */
 }
}

USART

Setup

  • Global interrupt
  • DMA on TX / channel 4 / priority high

Use DMA

HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)


IIC

HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
HAL_I2C_Mem_Write(&hi2c1,0xA0,100,I2C_MEMADD_SIZE_16BIT,i2cWriteBuf,10,10)


MDK-ARM Setup by STM32CubeMx

  • Install MDK-ARM lastest version
  • Install software pack for platform, for example STM32F030xxx
  • Install STM32Cube
  • Follow the following animation, open to watch

Code add this two lines for blinking IO in user code 1 area:

HAL_GPIO_TogglePin(LED_GPIO_Port,LED_Pin);               
HAL_Delay(1000);
HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);
HAL_Delay(1000);

Note

  • Default frequency is 8Mhz
  • Choose to output hex compilied file.
  • In STM32Cube, only copy necessary files, otherwise will be very big project folder