

Rev. 0.3 64M Bits Serial Pseudo-SRAM with SPI and QPI

REVISION HISTORY

<u>Revision</u>	<u>Description</u>	<u>Issue Date</u>
Rev. 0.1	Initial Issued	May.6. 2016
Rev. 0.2	Revised typos	May.19. 2016
Rev. 0.3	Revised the address bit length from 32 bits to 24 bits	Oct.13. 2016

64M Bits Serial Pseudo-SRAM with SPI and QPI

Rev. 0.3

FEATURES

■ SPI compatible bus interface

-Clock rate:

33MHz(max) for normal read 100MHz(max) for fast read

-Mode: SPI/QPI

■ Low power consumption:

Operating current:

30mA(MAX./SPI@33MHz) 60mA(MAX./QPI@100MHz)

- Single 3.3V power supply
- Unlimited read/write cycle
- Fast write time as minimum cycle time
- 8M x 8-bit organization
 - -1K byte per page
- High Reliability
- Green package available
- Package: 8-pin 150 mil SOP

GENERAL DESCRIPTION

The LY68L6400 is a 64M-bit serial pseudo SRAM device organized as 8Mx8 bits. It is fabricated using very high performance, high reliability CMOS technology.

The LY68L6400 is accessed via a simple Serial Peripheral Interface(SPI) compatible serial bus. Additionally, Quad Peripheral Interface(QPI) is supported if your application needs faster data rates. This device also supports unlimited reads and writes to the memory array.

The LY68L6400 operates from a single power supply of 3.3V and can offer high data bandwidth at 100MHz clock rate and Serial Quad interface.

The LY68L6400 offers 8-lead SOP package.

PIN CONFIGURATION

CE#	10	• _	8	Vcc
SO/SIO[1]	2	-Y68 XXX	7	SIO[3]
SIO[2]	3	ntek 1640	6	SCLK
Vss	4	0	5	si/sio[o]
		SOP		

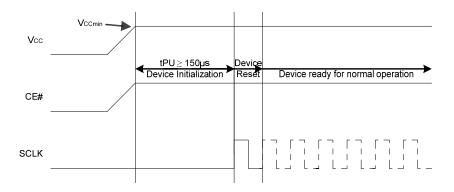
PIN DESCRIPTION

SYMBOL	SPI MODE	SQI MODE		
SI/SIOI[0]	Serial Input	Serial I/O[0]		
SO/SIO[1]	Serial Output	Serial I/O[1]		
SIO[2]	-	Serial I/O[2]		
SIO[3]	-	Serial I/O[3]		
CE#	Chip Select Inp	ut		
SCLK	Clock Signal In	put		
Vcc	Power Supply	Power Supply		
Vss	Ground	Ground		

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on V _{CC} relative to V _{SS}	V _{T1}	-0.5 to 4.6	V
Voltage on any other pin relative to Vss	V_{T2}	-0.5 to Vcc+0.5	V
Operating Temperature	T _A	-25 to 85	$^{\circ}\mathbb{C}$
Storage Temperature	T_{STG}	-65 to 150	°C

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.


Rev. 0.3

64M Bits Serial Pseudo-SRAM with SPI and QPI

POWER-UP INITIALIZATION

The LY68L6400 includes an on-chip voltage sensor used to start the self-initialization process. When $V_{\rm CC}$ reaches a stable level at or above minimum $V_{\rm CC}$, the device will require 150 μ s to complete its self-initialization process. From the beginning of power ramp to the end of the 150 μ s period, SCLK should remain LOW, CE# should remain HIGH(track $V_{\rm CC}$ within 200mV) and SI/SO/SIO[3:0] should remain LOW.

After the 150µs period, the device requires at least one clock during CE# high to properly reset the device, and then the device is ready for normal opearion.

Command/Address Latching Truth Table

		SPI Mode				(QPI Mod	е			
Command	Code	Cmd	Addr	Wait Cycle	DIO	Max Freq.	Cmd	Addr	Wait Cycle	DIO	Max Freq.
Read	03h	S	S	0	S	33			N/A		
Fast Read	0Bh	S	S	8	S	100			N/A		
Quad Read	EBh	S	Q	6	Q	100	Q	Q	6	Q	100
Write	02h	S	S	0	S	100	Q	Q	0	Q	100
Quad Write	38h	S	Q	0	Q	100	Q	Q	0	Q	100
Enter QPI Mode	35h	S	-	-	-	100			N/A		
Exit QPI Mode	F5h			N/A			Q	-	-	-	100

Note: S = Serial IO, Q = Quad IO

TEL: 886-3-6668838 FAX: 886-3-6668836

Rev. 0.3

64M Bits Serial Pseudo-SRAM with SPI and QPI

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CON	DITION	MIN.	TYP. *1	MAX.	UNIT
Supply Voltage	Vcc			-	3.3	-	V
Input High Voltage	ViH			Vcc-0.4	-	Vcc+0.2	V
Input Low Voltage	VIL			- 0.2	1	0.4	V
Input Leakage Current	I⊔	$V_{\text{CC}} \ge V_{\text{IN}} \ge V_{\text{SS}}$		- 1	-	1	μA
Output Leakage Current	ILO	$V_{CC} \ge V_{OUT} \ge V_{SS}$, Output Disabled		- 1	-	1	μΑ
Output High Voltage	Vон	I _{OH} = -0.2mA		0.8*Vcc	-	-	V
Output Low Voltage	Vol	I_{OL} = +0.2mA		-	-	0.2*Vcc	V
Average Operating	lcc ₁	CE# \leq 0.2, Others at 0.2V	SPI@33MHz	-	ı	30	mA
Power Supply Current	ICC1	or Vcc-0.2V I _{I/O} = 0mA;f=max	QPI@100MHz	-	-	60	mA
Standby Power Supply Current	I _{SB1}	CE# \geq V _{CC} - 0.2V, Others at 0.2V or V _C	cc - 0.2V	-	-	300	μΑ

Notes:

^{1.} Typical values are included for reference only and are not guaranteed or tested. Typical valued are measured at V_{CC} = V_{CC} (TYP.) and T_A = 25 $^{\circ}$ C

Rev. 0.3

64M Bits Serial Pseudo-SRAM with SPI and QPI

CAPACITANCE $(T_A = 25^{\circ}C, f = 1.0 \text{MHz})$

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{1/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to Vcc-0.2V
Input Rise and Fall Times	1.5ns
Input and Output Timing Reference Levels	Vcc/2
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -0.2mA/+0.2mA$

AC ELECTRICAL CHARACTERISTICS

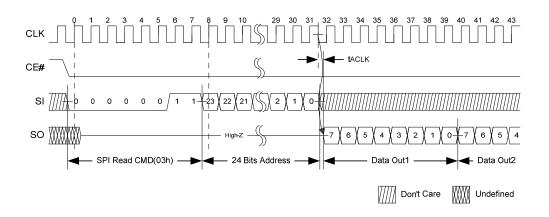
PARAMETER	SYM.	LY68	L6400	UNIT
PARAIVIETER	STIVI.	MIN.	MAX.	UNII
Clock Cycle Time	tclk@33MHz	30	-	ns
Clock Cycle Time	tclk@100MHz	10	-	ns
Clock low width	t _{CL}	0.45	0.55	t _{CLK}
Clock high width	tсн	0.45	0.55	tclk
Clock rise time	t _R	-	1.5	ns
Clock fall time	t _F	-	1.5	ns
CE# setup time to CLK rising edge	t _{CSP}	2.5	-	ns
Setup time to active CLK edge	ts	2.5	-	ns
Hold time from active CLK edge	tн	2	-	ns
Chip disable to DQ output high-Z	t _{HZ}	-	7	ns
CLK falling to output valid	taclk	-	7	ns
Output Hold from Clock falling	tон	1.5	-	ns
CE# low pulse width	tcem	-	5	us

Rev. 0.3

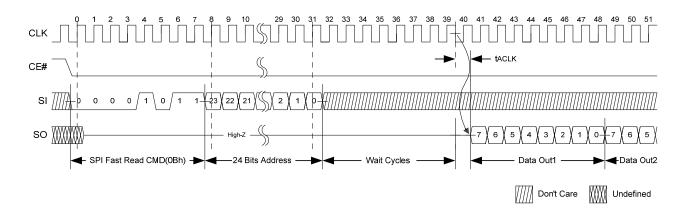
64M Bits Serial Pseudo-SRAM with SPI and QPI

SPI MODE OPERATIONS

The device powers up into SPI mode by default, but can also be switched into QPI mode.


1. SPI Mode : Read Operations

For all reads, data will be available tACLK after the falling edge of CLK.

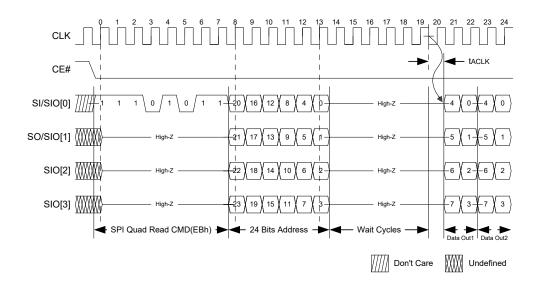

SPI Reads can be done in three ways:

- 1.1. 03h: Serial CMD, Serial IO, slow frequency
- 1.2. 0Bh: Serial CMD, Serial IO, fast frequency
- 1.3 EBh: Serial CMD, Quad IO, fast frequency

1.1 SPI Read(03h)

1.2 SPI Fast Read(0Bh)

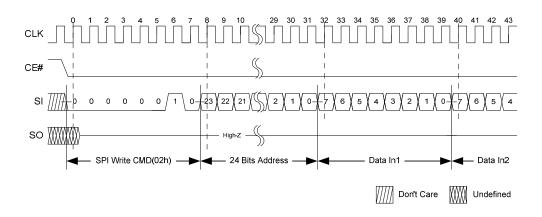
TEL: 886-3-6668838 FAX: 886-3-6668836



Rev. 0.3

64M Bits Serial Pseudo-SRAM with SPI and QPI

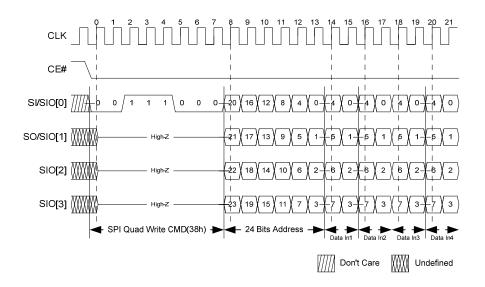
1.3 SPI Quad Read(EBh)

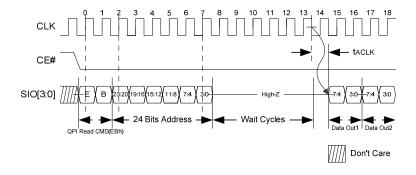


2. SPI Mode: Write Operations

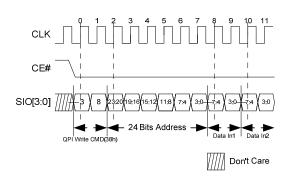
SPI Writes can be done in two ways:

2.1 02h : Serial CMD, Serial IO, slow frequency2.1 38h : Serial CMD, Quad IO, fast frequency


2.1 SPI Write(02h)


64M Bits Serial Pseudo-SRAM with SPI and QPI

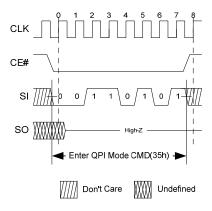
2.2 SPI Quad Write(38h)

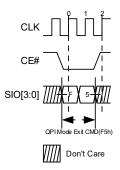


QPI MODE OPERATIONS

3. QPI Mode: Read Operations (EBh)

4. QPI Mode: Write Operations(38h or 02h)

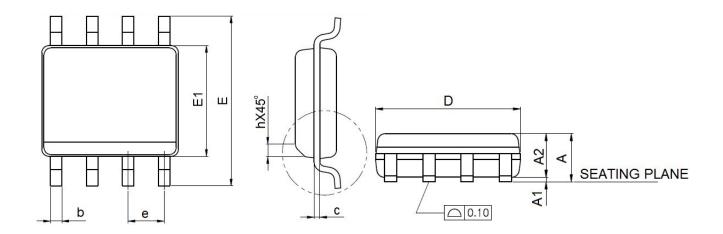



Rev. 0.3

64M Bits Serial Pseudo-SRAM with SPI and QPI

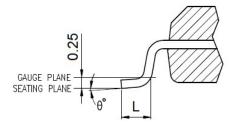
5. QPI Mode: Enable Operation(35h)

6. QPI Mode: Quit Operation(F5h)



Rev. 0.3

64M Bits Serial Pseudo-SRAM with SPI and QPI


PACKAGE OUTLINE DIMENSION

8-pin 150mil SOP Package Outline Dimension

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	STAN	DARD		
3 INDUL3	MIN.	MAX.		
Α	-8	1.75		
A1	0.10	0.25		
A2	1.25	-72		
Ь	0.31	0.51		
С	0.10	0.25		
D	4.90 BSC			
Е	6.00	BSC		
E1	3.90 BSC			
е	1.27	BSC		
L	0.40	1.27		
h	0.25	0.50		
θ°	0	8		

NOTES:

1.JEDEC OUTLINE: MS-012 AA REV.F (STANDARD) MS-012 BA REV.F (THERMAL)

2.DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15mm. PER SIDE.

3.DIMENSIONS "E1" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25mm PER SIDE.

TEL: 886-3-6668838 FAX: 886-3-6668836

Rev. 0.3

64M Bits Serial Pseudo-SRAM with SPI and QPI

ORDERING INFORMATION

Package Type	Maximum Clock Rate(MHz)	Temperature Range(℃)	Packing Type	Lyontek Item No.
8-Pin	100	25°C 05°C	Tube	LY68L6400SL
150mil SOP	100	-25℃~85℃	Tape Reel	LY68L6400SLT

Rev. 0.3

64M Bits Serial Pseudo-SRAM with SPI and QPI

THIS PAGE IS LEFT BLANK INTENTIONALLY.